Asia’s new agricultural revolution: planting a high-tech future

Population, inflation, climate stoke innovation to grow more with less

Pham Thi Huong went from the backbreaking job of coaxing coffee out of Vietnam’s central highlands to an inconceivable one: growing strawberries on rocks.

Huong and her husband threw in the shovel on their days of toil at the mercy of volatile commodity prices in 2019 and joined vertical agriculture company Orlar. Now they work together at a greenhouse where connected white pillars line up like library stacks, each one holding rock on top of rock. 

The rocks are treated with a patented mix of microbes to sustain plant life. Romaine lettuce, basil, bok choy and flowers burst from the stones.

“I was so surprised, seeing this for the first time,” Huong said over a patchy line from her mountainous farm town. 

Strawberries grow out of rocks at Orlar's vertical farm in Da Lat, in Vietnam's central highlands. (Photo by Orlar)

Strawberries grow out of rocks at Orlar's vertical farm in Da Lat, in Vietnam's central highlands. (Photo by Orlar)

“I thought, with technology like this, we can develop more,” Huong added, noting a further bonus: the use of far fewer chemicals than in traditional agriculture.

Huong’s move is part of an expanding agricultural revolution in Asia that aims to feed a ballooning population against a backdrop of formidable problems. The intimidating list includes food inflation, climate change, accessibility issues, supply chain disruptions, urban migration, aging societies and severe hunger.

Huong’s employer, Orlar, is cagey about the specifics of its technology but claims it minimizes the need for chemicals, energy, water and land. The startup’s task is one faced by businesses and farmers across a world where the population is expanding but resources are not. To feed an increasingly hungry planet, Orlar and other new farming revolutionaries must produce more with less.

Food prices have shot up across Asia, hitting their highest levels since 2011. Farmers face droughts and ice storms, rising costs of fertilizer and fuel, pandemic-related labor shortages, and supply chain disruptions exacerbated by the Russian invasion of Ukraine.

Prices are expected to keep rising. Meanwhile, Asia’s population is projected to surge by 700 million to 5.3 billion in 2050. Last year, more than 1.1 billion people lacked access to adequate food in this region alone.

The billion-dollar question now is: How will the world’s most populous land mass feed itself in the decades to come?

Across the region, companies are approaching this task by harnessing the power of technology. 

Some are disrupting thousands of years of traditional soil agriculture and breaking new ground, growing the food of our future on rocks, hydrogel sheets, petri dishes and vertical racks. Others bring machine learning to agtech.

In Japan, cherry-red robot tractors serve as new beasts of burden.

Yanmar's autonomous tractors plow a field in eastern Japan. (Photo by Yanmar)

Yanmar's autonomous tractors plow a field in eastern Japan. (Photo by Yanmar)

In China, pigs are monitored by roaming cameras, and tomatoes are harvested by bots.

From Philippine rice to Vietnamese shrimp, selective breeding is being applied to increase yields. Climate is being controlled in glasshouses, vertical farms, and fish tanks.

Some technology, from tracking soil health to following a mango’s supply chain journey, is getting cheaper, says Patricia Sosrodjojo, partner at Seedstars International Ventures, an early-stage investor in emerging markets.

But Sosrodjojo also warned that the “compounding” global issues of the last two years illustrate the need for more innovation. 

“People…realized there is this machinery that gets food to the market. And then things like COVID and the supply chain, [problems] that could happen did happen,” she said in an interview with Nikkei Asia. "It also serves as a wake-up call that these threats are real.”

A researcher with the International Rice Research Institute in the Philippines clips samples of a hybrid variety of African rice. (Photo by IRRI)

A researcher with the International Rice Research Institute in the Philippines clips samples of a hybrid variety of African rice. (Photo by IRRI)

Many companies are investing in research to develop solutions for problems that are expected to spiral in the years to come. “Better prepare the cart now, then attach the horse later,” said Jauhar Ali of the International Rice Research Institute (IRRI), which has been preparing for food shortages by genetically modifying rice to optimize nutrition and yield.

The agtech revolution could hardly be more pressing. Population growth is up but stockpiles are down, with reserves of staples shrinking for four straight years until just recently, according to the International Grains Council. 

Stocks of wheat, barley, maize, soybeans, and rice will drop to an eight-year low of 583 million metric tons in 2023, according to the intergovernmental organization.

A trifecta of problems has stoked food inflation: COVID, conflict, and climate. Russia’s war in Ukraine has driven up costs, from animal feed to fertilizer. This has compounded the food insecurity unleashed by export bans, hoarding and supply chain bedlam during the pandemic.  Global heating threatens to intensify the damage to crops caused by drought, floods, typhoons, and pests. 

Agtech has the potential to be an integral part of an ecosystem of innovation that could mean fewer humans will go hungry. But its acolytes will need to overcome crucial impediments, such as high investment costs and energy scarcity, if it is to live up to its existential promises. 

Tomatoes grow in a greenhouse in Kunming, Yunan province, China. (Photo by Ridder, a climate control system supplier)

Tomatoes grow in a greenhouse in Kunming, Yunan province, China. (Photo by Ridder, a climate control system supplier)

In 2022 B.C., farmers cultivated plants that suited their location. One could say the climate determined the crop.

In 2022 A.D., with farm tech, the crop determines the climate.

Indoor farms are sheltered from rain, sunlight, and heat. That gives humans what our ancestors might have seen as divine control over water levels, light, and temperatures used to nourish the crops of their choosing.

Chinese company Kaisheng Haofeng runs one of the planet’s biggest greenhouses, in the country with the most mouths to feed. It spreads across the area of 30 football pitches in rural Shandong province, where tomatoes are the star of the show. 

The company deploys an arsenal of Dutch machines that automate the fruit’s diet of water and fertilizer, calibrate light and ventilation, and kill bacteria with ultraviolet rays. Modern artificial microclimates enable horticulture year-round across the vast landscape of the nation of 1.4 billion people.

Kaisheng’s smart tech has raised yields sixfold.

Tomatoes grow in a Kaisheng Haofeng greenhouse in Shandong province, China. (Photo by Ridder)

Tomatoes grow in a Kaisheng Haofeng greenhouse in Shandong province, China. (Photo by Ridder)

Old-school greenhouses, by contrast, don’t “withstand harsh environments” too well, deputy general manager Li Ju-hai told Nikkei Asia, adding that they can’t produce the food quality that consumers demand.

“My country is ushering in a new era of enhanced comprehension of consumption,” Li said. 

That’s also the idea with Japan’s Mebiol, which claims it can grow food in barren places. Former Japanese astronaut Soichi Noguchi once took its flagship technology to space, and succeeded in growing herbs in zero gravity.

Mebiol’s invention looks like hairy grass sprouting from a huge sheet of plastic wrap. It’s a mix of nutrients and water in a hydrogel, which is then flattened into sheets fertile enough to sustain plants.

As with Orlar’s rocks in Vietnam, cherry tomatoes and mizuna leaves spring from the see-through film, using no soil and minimal water. 

Mizuna leaves grow without soil on a thin hydrogel film developed by Mebiol. (Photo by Mebiol)

Mizuna leaves grow without soil on a thin hydrogel film developed by Mebiol. (Photo by Mebiol)

The global agtech market will reap $22.5 billion in revenue by 2025, up from $9 billion in 2020, according to UK-based Juniper Research.

The numbers are attracting investment in agtech, which reached record highs last year as venture capitalists placed nearly $12.2 billion in 632 deals, according to international trade association CropLife. In the first quarter of this year alone, investors have splashed 224 deals with $3.9 billion.

“Agtech 1.0 concentrated on areas like genetics, pesticides, and fertilization,” said Sanjeev Krishnan, founder and managing director at S2G Ventures, which invests in food and agriculture. 

“Agtech 2.0 focuses much more on digitization, data science, and alternative farming, which has helped respond to COVID and the issues it caused with supply disruptions and labor force access.” 
Sanjeev Krishnan

“Something like digitalization has become important because people need supply chain visibility, they want to know crop yield," Krishnan said.

Agtech is allowing farming to move off scarce land, into buildings and onto rooftops.

Brazilian spinach grows on the Tampines Hub rooftop farm in Singapore. (Photo by Dylan Loh)

Brazilian spinach grows on the Tampines Hub rooftop farm in Singapore. (Photo by Dylan Loh)

This is particularly helpful in rich but densely populated countries like Singapore, which is about half the size of London and has less room for traditional agriculture. 

Singapore, which imports 90% of its food, sees urban farming as a way to produce more at home and bolster supply security. It has designated more than 10 rooftops to grow more than 2,000 tons of vegetables every year

ComCrop, one of the city-state’s first rooftop farms, has been churning out mint and lettuce using hydroponics since 2011. It requires neither pesticides nor soil on this tiny island nation of 724 square kilometers. 

The government aims to grow 30% of the island's nutritional needs by 2030. The Singapore Food Agency has earmarked more than $40 million to create an agriculture industry that is resilient to climate and can use resources efficiently.

The agency supports seafood businesses like Blue Ocean Aquaculture Technology, which rears jade perch and red tilapia in oxygen-rich tanks at a factory.

Shrimp farmers from Thailand to Vietnam are taking a similar approach, shifting their crustaceans from outdoor ponds to indoor tanks.

The controlled environment protects against plankton blooms and water pollution.

Indoor fish farming at Blue Ocean Aquaculture Technology’s factory in Singapore. (Photo by Singapore Food Agency)

Indoor fish farming at Blue Ocean Aquaculture Technology’s factory in Singapore. (Photo by Singapore Food Agency)

Climate control may guard farms from mercurial weather - but it can come at a heavy cost to the wider biosphere. 

Skeptics say not every change in agriculture is progress. For indoor farms, a big problem is the “phenomenal” amount of energy consumed, acknowledges Orlar founder Lyndal Hugo. She argues that the rocks her company use act like thermal batteries, storing heat and reducing the need for external power.

But vertical farms can be notoriously electricity-intensive. In one stark example, strawberries drained 3,000% more power on a Russian vertical farm than a Chilean conventional one, scholars Paul Teng and Steve Kim wrote in an analysis for Singapore’s Nanyang Technological University blog last year.

“Unless we remove energy from the system, we’re never going to fight climate change, we’re never going to fight food insecurity,” said Hugo, who is licensing her invention to partners in Indonesia, Malaysia, the Philippines and Thailand.

As Asia’s middle class expands, the region is expected to account for half the global growth in poultry and beef consumption, and three-fourths of seafood demand by 2030, according to a report by the Asian Development Bank. By then, more than 60% of cereal demand in the developing world will come from South and East Asia, the report said. 

To keep pace, food production will have to increase 60% to 70% compared with a decade ago, the ADB research showed.

And costs today are already setting records. Russia’s invasion of Ukraine, both top exporters of wheat and maize, drove previously-rising prices of staples including vegetable oils and cereals to record highs this year, according to the U.N.’s Food and Agriculture Organization’s annual Food Price Index.


The Index, which tracks monthly price changes in a basket of commonly traded food commodities, has climbed 23% in the last 12 months alone, hovering around an all-time high reached in March.

That has added to other contemporary obstacles to sourcing food. These include COVID-addled supply chains further strained by China’s pandemic lockdowns; extreme weather events worsened by climate change; and aging and urbanizing societies in which people are less likely to work the fields.

This is an urgent problem in Japan, where 29% of people are 65 or older, the highest rate in the world. The archipelago had 1.74 million farmer households in 2020, down 44% from 2000, said the Ministry of Agriculture, Forestry, and Fisheries. 



The shortage of human hands suggests one potential answer: introduce more mechanical ones.

Japanese company Yanmar Agribusiness has developed a fleet of self-driving tractors that bring precision to plowing and ridging. Their human overlords use tablets to map planned routes for the vehicles, which stop when their sensors detect people or objects nearby.

(Yanmar's autonomous tractor plows a field in eastern Japan.)

(Yanmar's autonomous tractor plows a field in eastern Japan.)

This is an example of the big impact that information and communication technology (ICT) can have on time-honored farming practices, said Yanmar’s Executive Engineering Officer Shigemi Hidaka. “Our agricultural industry needs to become a smart industry by utilizing technologies like ICT and data linkage,” he told Nikkei Asia.  

A thousand miles west, China’s 21st-century farm hands include the company Sananbio’s conveyor system that automates seeding and transplanting. Kaisheng Haofeng, meanwhile, plans to populate its greenhouses with robots for harvesting and packaging in 2023. 

And in the country with the world’s biggest appetite for pork, Beijing-based Nxin is developing machine learning to monitor pigs. Voice recognition, for example, can determine if a sow is crushing a piglet. Roving hog cameras boost output by using software to assess weight, pregnancy and signs of disease. 

Elsewhere in Asia devices do what humans can’t, or augment what they can. Drones in India blast pesticides at locusts. Sensors collect field data all across the continent, from moisture in soil to salinity in rice paddies. 

Other methods are being deployed to improve yield and quality of rice, Asia’s water-intensive staple carbohydrate. Nepal and the Philippines are investing millions of dollars in hybrid rice, which scientists alter for a number of traits, like disease and drought resistance. Selective breeding is also used in animals, such as milk cows in Bangladesh.

Genetic modification of rice is particularly useful in saving water. A kilogram of rice needs anywhere between 3,000 and 5,000 liters of water, compared to 900 liters for a kilogram of wheat and 500 liters for the same weight in potatoes.

Some hybrid rice varieties require up to 30% less water.

International Rice Research Institute conducts an optimization trial for drought and salinity. (Photo by IRRI)

International Rice Research Institute conducts an optimization trial for drought and salinity. (Photo by IRRI)

Decreasing water use is crucial in vast swathes of South and East Asia, where humanity is heading towards a water crisis due to shrinking glaciers, depleted groundwater and severe droughts.

The Philippines-based International Rice Research Institute said Manila is the first government to approve its Golden Rice, a strain loaded with vitamins to nourish more people for less. Ali, the institute’s head of hybrid rice tech research, said hurdles include the years of development needed, and a public leery of genetic modification. Filipino farmers opposed to Golden Rice said the modified plant would “poison our lands” and increase reliance on pesticides and herbicides. 

Elsewhere, technology is being used to alter the crop fields themselves. India and Thailand, the world’s biggest rice exporters, zap lasers at dry land to measure bumps that need to be flattened. This kind of leveling cuts water and fertilizer use by spreading them out evenly, raising rice harvests 7% to 10%, according to German aid agency GIZ.

Supporters of the new agricultural revolution say they urgently need more investment -- and efforts to bring down costs.  For example, Yanmar acknowledges that the $72,000-plus price tag on its autonomous tractor puts it out of reach of smallholders. The International Rice Research Institute has an annual budget of nearly $62 million, and Ali says that raising the hybrid rice program’s budget by even $1 million would reap multiples of that amount.

Despite all its potential, agtech is in its infancy. And countries with younger populations will take longer to scale to digital operations as they reap their “demographic dividend.” India, for example, will add another 183 million people to the working age group of 15-64 years over the next three decades, according to U.N. data.

To succeed, the new agricultural revolution will need to show that its innovations can reinvent millennia-old classical farming to meet the urgent needs of an age of food crisis in a cost-efficient manner.

Back in Vietnam, Orlar’s efforts to make soft fruits spring from rocks are a sign of the potentially transformative quality of the new agricultural revolution. Its founder Hugo puts the equation starkly: “It's only a valid technology if it improves people's lives.”

Graphics: MinJung Kim, Michael Tsang, Naomi Hakusui, Nakako Shiotsuki
Data: Grace Li
Copy editor: John Geis
Editors: Jui Chakravorty, Michael Peel